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Abstract

This paper deals with the direct identification of bending rigidities of thin anisotropic plates. These parameters are

extracted from an heterogeneous strain field which takes place onto the top surface of a bent plate. The loading

conditions are such that no closed-form solution is available for the deflection/slope/curvature fields. The procedure

presently used is the virtual fields method with ‘‘special’’ virtual fields. It is shown that the unknown parameters are

directly extracted with this method since no iterative calculations are required. The parameters are in fact directly equal

to the virtual work of the applied loading with the special virtual displacement fields. The headlines of the method are

recalled in the first part of the paper. They are then applied in the case of anisotropic bent plates. The accuracy and the

stability of the procedure are finally discussed through some relevant examples.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This work deals with the identification of the six bending rigidities of thin anisotropic plates from the

heterogeneous strain field which takes place onto the top surface of a bent plate. The interest lies in the fact

that the whole set of unknown parameters is involved in the mechanical response of the tested specimen.

Consequently, one test only is carried out for determining several parameters. The drawback of such ap-

proaches is generally the fact that no closed-form solutions for the strain/stress fields are available. Suitable

methods based on the updating of numerical models are generally proposed to solve this problem, espe-

cially when natural frequencies are considered as input data (Sol, 1986; Deobald and Gibson, 1988;
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DeWilde, 1990; Ayorinde and Gibson, 1993; Mota Soares et al., 1993; Araujo et al., 1996; Frederiksen,

1997; Okada et al., 1999). Such an approach has also been used in the case of static tests, either for in-plane

(Hendricks, 1991; Meuwissen et al., 1998; Okada et al., 1999) or bending tests (Wang and Kam, 2001;

LeMagorou et al., 2002). Another method which departs from the above ones is to avoid the iterative
updating of numerical models with a direct identification of the unknown parameters (Gr�eediac, 1989). In
this last approach, it is shown that the measured fields can be processed with a suitable use of the well-

known principle of virtual work (PVW) which describes the global equilibrium of the tested specimen. This

method is called the virtual fields method (VFM). Indeed, writing the PVW with particular virtual fields

leads in some cases (among which the anisotropic linear elasticity) to a system of linear equations from

which the unknown parameters are extracted after inversion. This approach has been successfully used in

the last decade in different cases of anisotropic material characterization (see for instance Gr�eediac and
Vautrin, 1990; Gr�eediac, 1996a; Gr�eediac, 1996b; Gr�eediac and Pierron, 1998; Gr�eediac et al., 1999; Pierron
et al., 2000; Pierron and Gr�eediac, 2000; Gr�eediac et al., 2001). With this approach, the key-point is the choice
of the virtual fields. In the above studies, this choice was somewhat empirical. In a companion paper, a

dramatic improvement has been proposed with the automatic construction of so-called special virtual fields

(Gr�eediac et al., 2002a). In this work, the choice of the virtual fields is no more empirical but obtained with
an automatic procedure. This ‘‘revisited’’ VFM has been successfully used for the determination of in-plane

properties of an orthotropic material, either in linear elasticity or in some cases of non-linearities (Gr�eediac
et al., 2002b). The objective here is to study the capabilities of the VFM with special virtual fields in the case

of the determination of bending rigidities of thin anisotropic plates. The theoretical aspects of the method
are described in the first part of the paper. A procedure for automatically constructing the special virtual

fields is then presented. Finally, some numerical examples of identifications illustrate the accuracy and

the stability of the VFM with special virtual fields for finding the bending rigidities of thin anisotropic

plates.

2. Theory

Let us consider a bent plate of any shape (see Fig. 1). It is subjected to nf forces Fi, i ¼ 1; . . . ; nf at points
Miðxi; yiÞ, i ¼ 1; . . . ; nf . It is simply supported at ns different points Piðx0i; y0iÞ, i ¼ 1; . . . ; ns. V , S and e are
respectively the volume, the external surface and the thickness of the plate. Within the framework of the

theory of anisotropic plates (Lekhnitskii, 1968), the moment/curvature relations may be written as (with the

usual rule of contracted indices: xx ! x, yy ! y, xy ! s)
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Fig. 1. Plate of any shape.
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24 35 ¼
Dxx Dxy Dxs

Dxy Dyy Dys

Dxs Dys Dss

24 35 kx
ky
ks

24 35 ð1Þ

where the Mi�s are the bending moments, the Dij�s are the bending stiffnesses, the ki�s are the curvatures
defined by

kx ¼ � o2w
ox2

ky ¼ � o2w
oy2

ks ¼ �2 o2w
oxoy

8>>>>>>><>>>>>>>:
ð2Þ

where w is the deflection.

The goal here is to identify the Dij�s from the heterogeneous curvature fields which takes place on the top

surface of the bent plate assuming that no closed-form solution for these fields is available. Within the

framework of the theory of thin plates, the global equilibrium of the plate can be written with the PVW

IxxDxx þ IyyDyy þ IxyDxy þ IssDss þ IxsDxs þ IysDys ¼ W �
e ð3Þ

The Iij�s are defined by

Ixx ¼
R
S kxk

�
x dS

Iyy ¼
R
S kyk

�
y dS

Ixy ¼
R
Sðkxk�y þ kyk�x ÞdS

Iss ¼
R
S ksk

�
s dS

Ixs ¼
R
Sðkxk�s þ ksk�x ÞdS

Iys ¼
R
Sðkyk�s þ ksk�y ÞdS

8>>>>>>>>><>>>>>>>>>:
ð4Þ

and W �
e is the virtual work produced by the nf applied loading forces Fj, j ¼ 1; . . . ; nf

W �
e ¼

Xj¼nf

j¼1
Fju�ðxj; yjÞ ð5Þ

The VFM consists in writing the above equation of global equilibrium with some particular virtual fields

w� (Gr�eediac, 1989). If as many different virtual fields as unknown parameters are found, a linear system is

obtained and inverted to get the unknowns.

The key-point of the method is the choice of the virtual fields since one has to choose among an infinite

number of possibilities. In the previous studies dealing with the VFM (Gr�eediac and Vautrin, 1990; Gr�eediac,
1996a; Gr�eediac, 1996b; Gr�eediac and Pierron, 1998; Gr�eediac et al., 1999; Pierron et al., 2000; Pierron and
Gr�eediac, 2000; Gr�eediac et al., 2001), those fields were chosen intuitively or following some semi-empirical
rules. For instance, the virtual fields were such that some components in the matrix of the linear system

were zero. Then the linear equations were partially uncoupled. In a companion paper (Gr�eediac et al.,
2002a), it is shown that some virtual fields called special virtual fields render the matrix of the linear system

equal to unity, leading therefore to a direct identification of the unknown parameters. These special virtual

fields are denoted hereafter bww�. The idea is to use the PVW with those special virtual fields such that five of

the six Iij�s are zero whereas the sixth one is equal to one. This leads to a direct determination of the pa-
rameter which coefficient is 1 in Eq. (6). For instance, if Dxx is the parameter to be extracted from the
heterogeneous actual field, one can write
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Ixx|{z}
¼1

Dxx þ Iyy|{z}
¼0

Dyy þ Ixy|{z}
¼0

Dxy þ Iss|{z}
¼0

Dss þ Ixs|{z}
¼0

Dxs þ Iys|{z}
¼0

Dys ¼ W �
e ð6Þ

The other unknowns are found by moving the ‘‘1’’ from one Iij to another. Since six material parameters are
to be determined, the problem is eventually to find six special virtual fields bww�ðiÞ, i ¼ 1; . . . ; 6 such that the
equalities in Table 1 are verified. In each case, the unknown parameter is equal to the virtual work of the

applied loading. Thus

Dxx ¼ W �ð1Þ
e

Dyy ¼ W �ð2Þ
e

Dxy ¼ W �ð3Þ
e

Dss ¼ W �ð4Þ
e

Dxs ¼ W �ð5Þ
e

Dys ¼ W �ð6Þ
e

8>>>>>><>>>>>>:
ð7Þ

with

W �ðiÞ
e ¼

Xj¼nf

j¼1
Fjbww�ðiÞðxj; yjÞ ð8Þ

In Gr�eediac et al. (2002a), a general procedure for constructing the special virtual fields is proposed. The
aim here is to examine the practical implementation of this procedure and its efficiency in the case of bent

plates.

3. Construction of the special virtual fields

3.1. Constraints under which the special virtual fields must be built

Let us now examine the properties that the special virtual fields bww� must satisfy. As explained in Gr�eediac
et al. (2002a), these fields must obey two conditions in all cases. Three extra conditions must also be satis-

fied if the distribution of the loading remains unknown or if only one part of the actual strain field is
measured but these particular conditions do not hold here. The two first conditions are

• Condition 1: the special virtual fields must be kinematically admissible. Hence,

8j ¼ 1; . . . ; ns; bww�ðx0j; y 0jÞ ¼ 0 ð9Þ

• Condition 2: for each unknown stiffness, the special virtual fields must verify the six fundamental equali-

ties in Table 1.

Table 1

Value of the different integrals with the special virtual fields

Extracted

parameter

Special virtual

field

Ixx Iyy Ixy Iss Ixs Iys

Dxx bww�ð1Þ 1 0 0 0 0 0

Dyy bww�ð2Þ 0 1 0 0 0 0

Dxy bww�ð3Þ 0 0 1 0 0 0

Dss bww�ð4Þ 0 0 0 1 0 0

Dxs bww�ð5Þ 0 0 0 0 1 0

Dys bww�ð6Þ 0 0 0 0 0 1
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3.2. General expression of the virtual fields

According to Gr�eediac et al. (2002a), it is proposed to expand the special virtual deflection with mo-
nomials as follows

bww� ¼
Xm
i¼0

Xn
j¼0

Aij
x
a

� �i y
b

� �j
ð10Þ

where the Aij�s are unknown coefficients which completely define the special virtual deflection fields and
therefore the corresponding unknown stiffness. The number of these unknowns is denoted nunk, with

nunk ¼ ðnþ 1Þ 
 ðmþ 1Þ ð11Þ

The goal is now to determine the nunk Aij�s using the above two conditions.

3.2.1. Condition 1

The plate is simply supported at ns points Pkðx0k; y0kÞ. Hence condition 1 and Eq. (10) lead to ns linear
equations of the type

Xm
i¼0

Xn
j¼0

Aij
x0k
a

� �i
y 0k
b

� �j

¼ 0; k ¼ 1; . . . ; ns ð12Þ

Note that one could also consider the following virtual deflection field instead of the preceding one defined
in Eq. (10)

bww� ¼
Yns
k¼0

ðx� x0kÞðy � y 0kÞ
Xm
i¼0

Xn
j¼0

Aij
x
a

� �i y
b

� �j !
ð13Þ

Such a field is directly kinematically admissible, but the calculation of the virtual strain components is much

more complicated in this last case. Consequently, the field in Eq. (10) is used in the following.

3.2.2. Condition 2

Integrals which appear in the six fundamental equalities in Table 1 involve the special virtual curvatures.

These curvatures are deduced from the special virtual deflection field bww� by differentiation

bkk�
x ¼ � 1

a2
Pm
i¼2

Pn
j¼0

iði� 1ÞAij
x
a

� �ði�2Þ y
b

� �j !

bkk�
y ¼ � 1

b2
Pm
i¼0

Pn
j¼2

jðj� 1ÞAij
x
a

� �i y
b

� �ðj�2Þ !

bkk�
s ¼ � 2

ab

Pm
i¼1

Pn
j¼1

ijAij
x
a

� �ði�1Þ y
b

� �ðj�1Þ !

8>>>>>>>>>>><>>>>>>>>>>>:
ð14Þ

Substituting the above expressions of the virtual curvature components in the six equalities provides six
linear equations where the Aij�s are the unknowns. These equations are not reported here for the sake of
legibility.
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3.3. Final linear system

In conclusion of the above section, a system of ns þ 6 linear equations where the Aij�s are the unknowns is
obtained. For instance, the nunk Aij�s of a special virtual field leading to D11 verify the following system

1
a2
Pm
i¼2

Pn
j¼0

Aijiði� 1Þ
R
S kx

x
a

� �ði�2Þ y
b

� �j
dS ¼ 1

1
b2
Pm
i¼0

Pn
j¼2

Aijjðj� 1Þ
R
S ky

x
a

� �i y
b

� �ðj�2Þ
dS ¼ 0

1
b2
Pm
i¼0

Pn
j¼2

Aijjðj� 1Þ
R
S kx

x
a

� �i y
b

� �ðj�2Þ
dS

þ 1
a2
Pm
i¼2

Pn
j¼0

Aijiði� 1Þ
R
S ky

x
a

� �ði�2Þ y
b

� �j
dS ¼ 0

1
ab

Pm
i¼1

Pn
j¼1

Aijij
R
S ks

x
a

� �ði�1Þ y
b

� �ðj�1Þ
dS ¼ 0

1
ab

Pm
i¼1

Pn
j¼1

Aijij
R
S kx

x
a

� �ði�1Þ y
b

� �ðj�1Þ
dS

þ 1
a2
Pm
i¼2

Pn
j¼0

Aijiði� 1Þ
R
S ks

x
a

� �i�2 y
b

� �j
dS ¼ 0

1
ab

Pm
i¼1

Pn
j¼1

Aijij
R
S ky

x
a

� �ði�1Þ y
b

� �ðj�1Þ
dS

þ 1
b2
Pm
i¼0

Pn
j¼2

Aijjðj� 1Þ
R
S ks

x
a

� �i y
b

� �ðj�2Þ
dS ¼ 0

������������������������������������������������

6 equations

Pm
i¼0

Pn
j¼0

Aij
x1
a

� �i y1
b

� �j ¼ 0

Pm
i¼0

Pn
j¼0

Aij
x2
a

� �i y2
b

� �j ¼ 0

..

.

Pm
i¼0

Pn
j¼0

Aij
xns
a

� �i yns
b

� �j ¼ 0

�������������������

ns equations

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð15Þ

The Aij�s of the special virtual fields leading to the other stiffness parameters are determined by changing the
location of the ‘‘1’’ in the right-hand part of the system. The above system can be written as

DY ¼ E ð16Þ

where D is a ð6þ nsÞ 
 nunk rectangular matrix, Y is the vector of the nunk unknown Aij�s which define the
special virtual fields, E is a vector with 6þ ns components. All of them are equal to 0 except one among the

six first ones which is equal to 1. As explained above, the location of this 1 depends on the stiffness to be
determined. Let us now examine the procedure used for solving this system.
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3.4. Procedure used for solving the final linear system

The procedure presently used for solving the system is described in Gr�eediac et al. (2002a) and Gr�eediac
and Pierron (2001). Only its main characteristics are therefore recalled.
It must first be underlined that there are more unknowns than equations if the expansion of the virtual

field in Eq. (10) is such that

nunk > 6þ ns ð17Þ

In this case, the matrix of the linear system becomes rectangular and there is an infinity of solutions. The

idea is to take advantage of this property to retain a solution which is the most stable when noisy data are

considered. First the

nunk!
ð6þ nsÞ!ðnunk � 6� nsÞ!

different ð6þ nsÞ 
 ð6þ nsÞ square matrices are extracted. It is then examined if the corresponding linear
system can be inverted, i.e. if the determinant is different from zero. In this case, the ð6þ nsÞ corres-
ponding Aij�s are determined by inversion of the linear system assuming that the remaining nunk � 6� ns
Aij�s are zero for stability reasons (Gr�eediac et al., 2002a). A special virtual field is obtained and the

corresponding unknown stiffness if deduced using Eq. (7). Since many different invertible square matrices

are found in practice, several estimates of the stiffnesses are obtained. It is considered that the

‘‘best’’ estimate is the value which is the less sensitive to noisy data (Gr�eediac et al., 2002a). Selecting the
square matrix with the best condition number could be considered (Golub and Loan, 1993), but it

has been shown that it is more efficient to voluntary introduce a disturbance in the input data (Gr�eediac
and Pierron, 2001) and then to select the estimate which is the less sensitive to this disturbance. The
reason is the fact that the method of the condition number is too general: it does not account for

the particular structure of the components of the matrix. Since they are built as weighted integrals of the

actual measured strain fields, they do not uniformly react when a noise is introduced. Finally, all

the invertible square matrices are disturbed (presently by adding a constant value to the coordinates)

and new stiffnesses are deduced. The less sensitive to this disturbance is considered as the optimal

identified value. The corresponding special virtual field is called hereafter optimized special virtual

field.

4. Numerical simulations

4.1. Principle

The objective here is to investigate the capabilities of the VFM in terms of accuracy and stability.
The input data are strain components on the top surface of bent plates. Such data are directly related

to the curvatures within the framework of the theory of thin plates (Lekhnitskii, 1968). They can be

obtained in practice with a suitable optical device, either directly or by differentiation of measured

slopes (Surrel et al., 1999) but this point is not discussed here to focus only on the identification

procedure. These data are therefore provided by a finite programme (ANSYS 6.0 package) and the goal is

to retrieve the bending stiffness components input in the FE programme. The tested plate is a 0.1 m
 0.1
m square subjected to some local forces (see Fig. 2). The mesh has 50
 50¼ 2500 square elements.

F1 causes bending of the plate along direction 1 between supports P1 and P2. F2 causes bending of
the plate along direction 2 between supports P2 and P3. A twist of the plate is finally caused by F3.
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Consequently, the six bending stiffness components are expected to influence the actual deflection/slope/
curvature fields. They are therefore identifiable. In practice, F ¼ F1 ¼ F2 ¼ F3 ¼ 10 N.

Since the plate is simply supported at three points P1, P2 and P3, ns ¼ 3 conditions must be written to

obtain an admissible virtual field

bww�ðxP1 ; yP1Þ ¼ bww�ðxP2 ; yP2Þ ¼ bww�ðxP3 ; yP3Þ ¼ 0 ð18Þ

Concerning the numerical procedure, the first step is to fix a value for m and n which are the maximum
degree of the monomials in Eq. (10). m ¼ 3 and n ¼ 3 are chosen here. In this case, nunk ¼ 16 Aij�s must be
determined to define the special virtual deflection field whereas 6þ ns ¼ 6þ 3 ¼ 9 equations are available.

This result illustrates the fact that an infinity of solutions will be found a priori.

16!

9!ð16� 9Þ! ¼
16!

9!7!
¼ 11440

different square matrices can be extracted from the rectangular matrix E in Eq. (16). The procedure used in

Gr�eediac et al. (2002a) and recalled in Section 3.4 is used to determine the Aij�s. Since the side of the plate is
100 mm long, a ¼ b ¼ 100 mm in Eq. (10).

Several plates listed in Table 2 are tested. They exhibit various types of anisotropy. Material A is a glass/
epoxy (Ex ¼ 40 GPa, Ey ¼ 10 GPa, mxy ¼ 0:3, Gxy ¼ 4 GPa), material B is a carbon/epoxy (Ex ¼ 130 GPa,

Table 2

Bending stiffnesses of different anisotropic plates

Plate # Material Stacking

sequence

Dxx (Nm) Dyy (Nm) Dxy (Nm) Dss (Nm) Dxs (Nm) Dys (Nm)

1 A ½04�s 3.410 0.852 0.256 0.333 0 0

2 B ½04�s 10.909 0.839 0.251 0.417 0 0

3 B ½304�s 6.592 1.558 2.042 2.208 3.217 1.115

4 B ½0
 30 90�s 9.000 1.292 0.983 1.150 1.308 0.464

5 A ½0
 30 90�s 2.925 0.967 0.440 0.517 0.332 0.118

F2

F1

x

P1

P2

P3

100 mm

M2

M1

F3

a3

y

Fig. 2. Square plate under bending.
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Ey ¼ 10 GPa, mxy ¼ 0:3, Gxy ¼ 5 GPa). All plates are 1 mm thickness. Their bending stiffnesses in Table 2 are
considered as reference values for the following numerical simulations.

4.2. Results

The results obtained for plates 1–5 are reported in Tables 3–7. In each case, several calculations have

been performed.

• First, the three curvatures at the center of the elements obtained from the FE model are considered as
input data. The values identified with such data are reported in row 2 of each Table (‘‘without noise’’).

Note the deflections or the slopes could also be considered as input data but a numerical differentiation

should be added. These cases are therefore not presently considered to focus only on the identification

procedure.

Table 3

Identified bending stiffnesses, plate 1

Dxx (Nm) Dyy (Nm) Dxy (Nm) Dss (Nm) Dxs (Nm) Dys (Nm)

Reference 3.410 0.852 0.256 0.333 0 0

Without noise 3.412 0.850 0.256 0.334 6.3
 10�5 )1.9
 10�4
0.06% )0.23% 0% 0.3% – –

p ¼ 1% 3.485 0.854 0.253 0.334 0.001 0.002

)1.91% 0.23% )1.17% 0.30% – –

p ¼ 5% 4.532 0.467 0.175 0.354 )0.016 0.002

32.90% )45.19% )31.64% 6.31% – –

q ¼ 5%, average 3.430 0.840 0.267 0.333 4.4
 10�4 1.7
 10�4
0.59% )1.41% 4.30% 0% – –

q ¼ 5%, coef. of variation (%) 5.19 7.08 17.70 0.263 – –

Table 4

Identified bending stiffnesses, plate 2

Dxx (Nm) Dyy (Nm) Dxy (Nm) Dss (Nm) Dxs (Nm) Dys (Nm)

Reference 10.909 0.839 0.251 0.417 0 0

Without noise 10.899 0.848 0.251 0.417 8.7
 10�5 0.01

)0.09% 1.07% 0% 0% – –

p ¼ 1% 11.132 0.857 0.246 0.418 6.9
 10�4 )0.002
2.04% 2.15% )1.99% 0.24% – –

p ¼ 5% 12.616 1.281 0.100 0.432 )0.006 0.028

15.65% 52.68% )60.16% 3.60% – –

q ¼ 5%, average 11.031 8.347 0.234 4.189 15
 10�4 3.7
 10�4
1.12% )0.47% )6.77% 0.47% – –

q ¼ 5%, coef. of variation (%) 8.23 12.79 76.66 0.986 – –
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Table 6

Identified bending stiffnesses, plate 4

Dxx (Nm) Dyy (Nm) Dxy (Nm) Dss (Nm) Dxs (Nm) Dys (Nm)

Reference 9.000 1.292 0.983 1.150 1.308 0.464

Without noise 9.006 1.295 0.982 1.146 1.308 0.464

0.07% 0.23% )0.10% )0.35% 0% 0%

p ¼ 1% 8.954 1.314 0.969 1.143 1.296 0.484

)0.51% 1.70% )1.42% )0.61% )0.92% 4.31%

p ¼ 5% 10.289 1.765 0.204 1.052 1.208 0.622

14.32% 36.61% )79.25% )8.52% )7.65% 34.05%

q ¼ 5%, average 8.964 1.309 0.986 1.166 1.296 0.475

)0.40% 1.32% 0.31% 1.39% )0.92% 2.37%

q ¼ 5%, coef. of variation (%) 4.47 10.80 18.42 3.50 7.29 9.66

Table 7

Identified bending stiffnesses, plate 5

Dxx (Nm) Dyy (Nm) Dxy (Nm) Dss (Nm) Dxs (Nm) Dys (Nm)

Reference 2.925 0.967 0.440 0.517 0.332 0.118

Without noise 2.933 0.972 0.439 0.517 0.331 0.120

0.27% 0.52% )0.23% 0% )0.30% 1.69%

p ¼ 1% 2.981 1.001 0.430 0.504 0.340 0.130

1.91% 3.52% )2.27% )2.51% 2.41% 10.17%

p ¼ 5% 3.986 1.717 0.394 0.452 0.326 0.271

36.27% 77.56% )10.45% )12.57% )1.81% 129.66%

q ¼ 5%, average 2.899 0.959 0.336 0.516 0.436 0.120

)0.89% )0.83% )23.64% )0.19% 31.33% 1.69%

q ¼ 5%, coef. of variation (%) 6.25 10.15 6.81 0.82 6.61 5.66

Table 5

Identified bending stiffnesses, plate 3

Dxx (Nm) Dyy (Nm) Dxy (Nm) Dss (Nm) Dxs (Nm) Dys (Nm)

Reference 6.592 1.558 2.042 2.208 3.217 1.115

Without noise 6.614 1.564 2.051 2.222 3.234 1.143

0.33% 0.39% 0.44% 0.63% 0.53% 2.51%

p ¼ 1% 6.397 1.589 2.015 2.193 3.268 1.159

)2.96% 1.99% )1.32% )0.68% 1.59% 3.95%

p ¼ 5% 4.874 2.244 1.421 2.743 3.813 1.349

)26.06% 42.75% )30.41% 24.23% 18.53% 20.99%

q ¼ 5%, average 6.656 1.590 2.135 2.219 3.214 1.159

0.97% 2.05% 4.55% 0.50% )0.09% 3.95%

q ¼ 5%, coef. of variation (%) 10.1 29.0 23.0 11.1 9.1 37.7
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• Two types of noise are then added to these input data to observe the sensitivity of the procedure to a

noise. The first one is a shift of the coordinates of a magnitude of p% of the side of the square plate.

In practice, such bias could be due to a displacement of the camera which captures the data onto the

surface of the plate. In this case, a constant value of p 
 a is added to the coordinates of the points
where the data are known (the center of the elements of the FE model): x ! xþ p 
 a, y ! y þ p 
 a.
Results obtained with p ¼ 1% and p ¼ 5% are reported in rows 3 and 4 of each table. The second

type of noise is a uniform random noise added to the curvatures. The magnitude is a percentage

q% of the maximum value of the absolute value of the three curvatures. Results obtained with

q ¼ 5% are reported in rows 5 and 6 of each table. Thirty different calculations have been performed,

each of them with a new set of randomly generated noisy curvatures. The average of each stiffness is

reported in row 5. The coefficient of variation (defined by the ratio between the standard deviation of

the distribution and the average) is reported in row 6.

When looking at the results obtained from ‘‘exact’’ data, the identified stiffnesses are all within less

than 1% of the reference ones, validating the numerical identification routine. To evaluate the impact of

simulated measurement noise, one has to look at the results in a comparative manner. Comparing the

results obtained for plate 1 (glass/epoxy unidirectional) and plate 2 (carbon/epoxy unidirectional), it

appears quite clearly that the second is more sensitive to noise than the first. This is consistent with

results obtained on in-plane configurations (Pierron and Gr�eediac, 2000) where a stronger anisotropy leads
to more difficult identification. Nevertheless, the results are good in general, apart from the Dxy term
which is very sensitive to noise. Again, this is consistent with previous results obtained by the authors or

others teams. The reason is that this stiffness component does not influence the strain and stress fields

very much, leading to a certain instability. A possible way out of this is to identify invariant parameters,

as proposed in Gr�eediac (1996a). Another surprising feature is the sensitivity of the identified stiffness

components in this case to a severe shift in coordinates (p ¼ 5%), except Dss. This had not been seen on

previous in-plane configurations (Pierron and Gr�eediac, 2000). The reason is certainly the fact that the
shear strain is presently predominant in the actual strain field because of the loading conditions, as il-

lustrated below. Finally, it can be seen that the coupling terms Dxs and Dys are always at least an order of
magnitude below the other terms, indicating that these terms are zero. Considering now the carbon/epoxy

unidirectional plate at 30� it can be seen that although both terms are identified within reasonable

bounds, the Dys component is more sensitive to noise. The reason is certainly the same as that given above

for the Dxy component. Nevertheless, the present procedure enables the extraction of the six stiffness

components of an anisotropic plate with just one test. Moving now to more elaborate stacking sequences

(Tables 6 and 7), the same remarks as above apply.

4.3. Examples of special virtual fields

The special virtual fields obtained for plate 1 are plotted in Fig. 3 along with the actual deflection

field. The special virtual fields are multiplied by a constant K to obtain comparable orders of magni-

tudes between actual and virtual fields. K is reported in the caption of the figures. It can be observed

that both the actual and the virtual deflections are zero at the three supports. The virtual deflections are

zero at these points because they are kinematically admissible. It also clearly appears that the actual

deflection field is much smoother than the special virtual fields. This is due to the fact that the virtual

fields filter the actual curvatures to extract the unknown parameters. Consequently, the measured data

at some parts of the plate contribute more than others. As a general remark, it is clear that such fields
could not have been guessed. Their expressions are given below.

M. Gr�eediac et al. / International Journal of Solids and Structures 40 (2003) 2401–2419 2411



Fig. 3. Actual deflection field (same in each figure) and optimized special virtual deflection fields, plate 1.
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ð19Þ

It can be observed that the monomials in the expansion of the special virtual fields are different from one

case to another even though y=a and x3=a3 are used in the six cases.
Actual and virtual curvatures kx and bkxkx �ð1Þ are plotted in Fig. 4a and b respectively, their product

kx 
 bkxkx �ð1Þ in Fig. 4c. Two cases are considered: without noise added to the curvatures (left-hand side

column) and with noise added to the curvatures (right-hand side column). The second case is in fact the
result obtained with the first of the 30 calculations performed when noisy curvatures are processed (see

Section 4.2 above). The magnitude of the noise is here q ¼ 5% of the maximum value of the absolute value

of the three curvatures. In the present case, the maximum value of the absolute value of the third curvature

ks is about 30 times greater than the maximum value of the absolute value of the first curvature kx. This is
due to the fact that F ¼ F1 ¼ F2 ¼ F3 in Fig. 2, leading therefore to a predominant twist. This is the reason
why the error on kx is very crude, as can be seen in Fig. 4a.
The virtual curvature bkxkx �ð1Þ is rather simple. This result is consistent with the above expression of the

special virtual deflection field: only 1=a2, x=a3 and xy=a4 are used to expand the virtual strain bkxkx �ð1Þ in the
case ‘‘without noise’’. It must be pointed out that the virtual curvature fields are similar in both cases.

In both cases too, it can be checked thatZ
S
kx bkxkx�ð1ÞdS ¼ 1 ð20Þ

since bkxkx �ð1Þ is a special virtual field.

The identified rigidities are directly proportional to the virtual deflection at M1, M2 and M3. It can be
checked in Fig. 5 that the virtual deflection is about the same in both cases (actual curvatures ‘‘without
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noise’’ and ‘‘with noise’’). The identified value of Dxx is therefore close from one case to another. Indeed, the

identified value for Dxx is 3.152 Nm in the case ‘‘with noise’’ and 3.412 Nm in the case ‘‘without noise’’ (the

reference value is 3.410 Nm). This clearly illustrate the stability of the procedure. In fact, the local values of

the curvature exhibit an important random error at each point, but the integration average out these local

discrepancies between actual and noisy data.

Fig. 4. Actual and optimized special virtual curvature fields without (left-hand side column) and with (right-hand side column) noise,

q ¼ 5%, plate 1.
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4.4. Open hole plate

An important feature of the method is that it can be adapted to a plate regardless of its geometry. As an

example, an open hole plate has been simulated (see Fig. 6). The plate has the same dimensions as the

previous ones, but has a 20
 20 mm2 square open hole in its center. The material used here is the glass/

epoxy unidirectional composite. The results of the identification are reported in Table 8. Comparing to the

results concerning the same material and the normal square plate (Table 3), it can be seen that both Dyy and

Dss are now much more sensitive to simulated noise. This indicates that now, the mechanical test used is not
so well suited to extract all the stiffness components. One way to approach this issue is proposed by Le-

Magorou et al. (2002) and Arafeh et al. (1995) where the test configuration is optimized using sensitivity

coefficients obtained by a finite element model. Since these authors use finite element model updating, it is

natural for them to extract sensitivity factors from these models. Nevertheless, the VFM should be able to

provide information on the ‘‘identifiability’’ of the different coefficients directly from the curvature maps.

Fig. 5. Optimized special virtual deflection field bww�ð1Þ, actual curvature without and with noise, q ¼ 5%, plate 1.

F

F

x

20 mm

100 mm

P 1

P 2

P 3

F

y

Fig. 6. Open hole plate.
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Table 8

Identified bending stiffnesses, open hole plate

Dxx (Nm) Dyy (Nm) Dxy (Nm) Dss (Nm) Dxs (Nm) Dys (Nm)

Reference 3.410 0.852 0.256 0.333 0 0

Without noise 3.412 0.854 0.255 0.333 4.8
 10�4 8.7
 10�5
0.06% 0.23% )0.39% 0% – –

p ¼ 1% 3.380 1.104 0.245 0.333 )3.3
 10�4 0.026

)0.88% 29.58% )4.29% 0% – –

p ¼ 5% 3.239 2.057 0.140 0.340 )0.086 0.125

)5.01% 141.43% 2.10% )45.31% – –

q ¼ 5%, average 3.342 0.847 0.270 0.334 )8.2
 10�4 0.002

)0.02% )0.59% 0.30% 5.47% – –

q ¼ 5%, coef. of variation (%) 7.18 27.08 0.15 22.44 – –

F

F

x

100 mm

P1

P2

P3

F

P4

y

Fig. 7. Hyperstatic plate.

Table 9

Identified bending stiffnesses, hyperstatic plate

Dxx (Nm) Dyy (Nm) Dxy (Nm) Dss (Nm) Dxs (Nm) Dys (Nm)

Reference 3.410 0.852 0.256 0.333 0 0

Without noise 3.411 0.853 0.256 0.334 2.4
 10�5 2.3
 10�4
0.03% 0.12% 0% 0.30% – –

p ¼ 1% 3.393 0.848 0.254 0.336 )0.001 7.2
 10�4
)0.50% )0.47% )0.78% 0.90% – –

p ¼ 5% 3.337 0.839 0.257 0.359 )0.019 0.003

)2.14% )1.53% 0.39% 7.81% – –

q ¼ 5%, average 3.413 0.852 0.256 0.334 5.6
 10�5 1.6
 10�4
0.09% 0% 0% 0.30% – –

q ¼ 5%, coef. of variation (%) 1.94 1.48 5.48 0.54 – –

2416 M. Gr�eediac et al. / International Journal of Solids and Structures 40 (2003) 2401–2419



Fig. 8. Actual deflection field (same in each figure) and optimized special virtual deflection fields, hyperstatic plate.
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More work is needed in this area to perform the simultaneous optimization of both actual and virtual fields.

This is a key issue for the future of identification from whole-field measurements with his procedure.

4.5. Hyperstatic plate

A last example is shown to illustrate the capabilities of the method. A fourth support is added at point
P4, as shown in Fig. 7. If this test is carried out in practice, it will be impossible to know the actual imposed
displacement at this fourth support. For the numerical simulations, an imposed value of 0.5 mm is pres-

cribed at this fourth support to model a small defect of the testing device. It should be underlined that if a

finite element model updating technique was used, the value of this imposed displacement would be re-

quired as input data. With the VFM, only a fourth condition must be added to the three listed in Eq. (18) to

obtain admissible deflection fieldsbww�ðxP4 ; yP4Þ ¼ 0 ð21Þ

In this case, the contribution to the virtual work of the force at this point is zeroed by the virtual de-

flection. The material use here is the glass/epoxy unidirectional. The results are reported in Table 9. When
comparing to Table 3 (same material), it is clear that the results are indeed much better with the fourth

support. This indicates with no error that this last test is better in terms of sensitivity. It shows that the

VFM could be used to extract sensitivity factors based on simulated noise. Again, this point should be

investigated more closely in future work.

Finally, Fig. 8 shows both actual and virtual fields. It can be checked that the virtual fields have all zero

deflection at point P4 since it is admissible.

5. Conclusion

Applying the VFM with special virtual fields leads to the direct determination of the bending rigidities of

thin anisotropic plates from heterogeneous strain fields. A procedure for determining the special virtual

fields has been presented in the particular case of the bending of plates. Numerical simulations have shown
that the procedure is accurate. The sensitivity of the identified parameters to noisy data has been investi-

gated. It has been shown that it is compatible with a practical implementation of the procedure since the

noise is unavoidable in this case. Finally, the VFM has been tested in the case of an hyperstatic plate for

which the displacements prescribed by the supports remain generally unknown. The results found in this

case are much less sensitive to noise than in the other cases. This feature clearly shows that the actual strain

field (and not only the virtual one) directly influences the accuracy and the sensitivity of the procedure.

More work is therefore needed to define some parameters to evaluate the sensitivity of each stiffness

component to the identification procedure. This could lead in the future to the definition of a confidence
index for each value identified and to the definition of mechanical configurations which would be optimized

with respect to this index.
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