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Abstract

This paper deals with the direct identification of bending rigidities of thin anisotropic plates. These parameters are
extracted from an heterogeneous strain field which takes place onto the top surface of a bent plate. The loading
conditions are such that no closed-form solution is available for the deflection/slope/curvature fields. The procedure
presently used is the virtual fields method with ““special” virtual fields. It is shown that the unknown parameters are
directly extracted with this method since no iterative calculations are required. The parameters are in fact directly equal
to the virtual work of the applied loading with the special virtual displacement fields. The headlines of the method are
recalled in the first part of the paper. They are then applied in the case of anisotropic bent plates. The accuracy and the
stability of the procedure are finally discussed through some relevant examples.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This work deals with the identification of the six bending rigidities of thin anisotropic plates from the
heterogeneous strain field which takes place onto the top surface of a bent plate. The interest lies in the fact
that the whole set of unknown parameters is involved in the mechanical response of the tested specimen.
Consequently, one test only is carried out for determining several parameters. The drawback of such ap-
proaches is generally the fact that no closed-form solutions for the strain/stress fields are available. Suitable
methods based on the updating of numerical models are generally proposed to solve this problem, espe-
cially when natural frequencies are considered as input data (Sol, 1986; Deobald and Gibson, 1988;
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DeWilde, 1990; Ayorinde and Gibson, 1993; Mota Soares et al., 1993; Araujo et al., 1996; Frederiksen,
1997; Okada et al., 1999). Such an approach has also been used in the case of static tests, either for in-plane
(Hendricks, 1991; Meuwissen et al., 1998; Okada et al., 1999) or bending tests (Wang and Kam, 2001;
LeMagorou et al., 2002). Another method which departs from the above ones is to avoid the iterative
updating of numerical models with a direct identification of the unknown parameters (Grédiac, 1989). In
this last approach, it is shown that the measured fields can be processed with a suitable use of the well-
known principle of virtual work (PVW) which describes the global equilibrium of the tested specimen. This
method is called the virtual fields method (VFM). Indeed, writing the PVW with particular virtual fields
leads in some cases (among which the anisotropic linear elasticity) to a system of linear equations from
which the unknown parameters are extracted after inversion. This approach has been successfully used in
the last decade in different cases of anisotropic material characterization (see for instance Grédiac and
Vautrin, 1990; Grédiac, 1996a; Grédiac, 1996b; Grédiac and Pierron, 1998; Grédiac et al., 1999; Pierron
et al., 2000; Pierron and Grédiac, 2000; Grédiac et al., 2001). With this approach, the key-point is the choice
of the virtual fields. In the above studies, this choice was somewhat empirical. In a companion paper, a
dramatic improvement has been proposed with the automatic construction of so-called special virtual fields
(Grédiac et al., 2002a). In this work, the choice of the virtual fields is no more empirical but obtained with
an automatic procedure. This “revisited”” VFM has been successfully used for the determination of in-plane
properties of an orthotropic material, either in linear elasticity or in some cases of non-linearities (Grédiac
et al., 2002b). The objective here is to study the capabilities of the VFM with special virtual fields in the case
of the determination of bending rigidities of thin anisotropic plates. The theoretical aspects of the method
are described in the first part of the paper. A procedure for automatically constructing the special virtual
fields is then presented. Finally, some numerical examples of identifications illustrate the accuracy and
the stability of the VFM with special virtual fields for finding the bending rigidities of thin anisotropic
plates.

2. Theory

Let us consider a bent plate of any shape (see Fig. 1). It is subjected to n, forces F;, i = 1,...,n, at points
M;(x;, ), i=1,...,n,. It is simply supported at n, different points P,(x},3)), i=1,...,n,. V, S and e are
respectively the volume, the external surface and the thickness of the plate. Within the framework of the
theory of anisotropic plates (Lekhnitskii, 1968), the moment/curvature relations may be written as (with the
usual rule of contracted indices: xx — x, yy — y, xy — )

~0

w9

fiyv)

Fig. 1. Plate of any shape.
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where the M;’s are the bending moments, the D;;’s are the bending stiffnesses, the k;’s are the curvatures
defined by

o*w
k= ——
ox2
o*w
= (2)
P *w
xOy

where w is the deflection.

The goal here is to identify the D;;’s from the heterogeneous curvature fields which takes place on the top
surface of the bent plate assuming that no closed-form solution for these fields is available. Within the
framework of the theory of thin plates, the global equilibrium of the plate can be written with the PVW

LDy + 1Dy + LDy, + 1 Dys + LDy + 1IyDys = WS 3)
The I;’s are defined by
L= Jykik; d
Ly = [skk;dS
Ly = [y(kk; + k k) dS
Iy = [Gkk:dS
Ly = [s(kk{ + kiky) dS
Ly = Jy(kkS + kik})dS

and W is the virtual work produced by the n, applied loading forces F;, j=1,...,n,

j=ny

we = Fu(x;,) (5)
j=1

The VFM consists in writing the above equation of global equilibrium with some particular virtual fields
w* (Grédiac, 1989). If as many different virtual fields as unknown parameters are found, a linear system is
obtained and inverted to get the unknowns.

The key-point of the method is the choice of the virtual fields since one has to choose among an infinite
number of possibilities. In the previous studies dealing with the VFM (Grédiac and Vautrin, 1990; Grédiac,
1996a; Grédiac, 1996b; Grédiac and Pierron, 1998; Grédiac et al., 1999; Pierron et al., 2000; Pierron and
Grédiac, 2000; Grédiac et al., 2001), those fields were chosen intuitively or following some semi-empirical
rules. For instance, the virtual fields were such that some components in the matrix of the linear system
were zero. Then the linear equations were partially uncoupled. In a companion paper (Grédiac et al.,
2002a), it is shown that some virtual fields called special virtual fields render the matrix of the linear system
equal to unity, leading therefore to a direct identification of the unknown parameters. These special virtual
fields are denoted hereafter w*. The idea is to use the PVW with those special virtual fields such that five of
the six ;s are zero whereas the sixth one is equal to one. This leads to a direct determination of the pa-
rameter which coefficient is 1 in Eq. (6). For instance, if D,, is the parameter to be extracted from the
heterogeneous actual field, one can write
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]xx Dxx + [)y D}y + ]xy ny + ]ss Dss + ]xs st + Iys Dys = VV: (6)
~~ ~ ~—~ S~~~ ~—~ N~~~
=1 =0 =0 =0 =0 =0

The other unknowns are found by moving the ““1” from one J;; to another. Since six material parameters are
to be determined, the problem is eventually to find six special virtual fields w*), i = 1,..., 6 such that the
equalities in Table 1 are verified. In each case, the unknown parameter is equal to the virtual work of the
applied loading. Thus

Dx — VV;U)
Dy = W2
D., = w*0®)
D:i — VV:*(4) (7)
Dy = W
Dy = W,
with
WD =" Fw(x;, ) (8)

In Grédiac et al. (2002a), a general procedure for constructing the special virtual fields is proposed. The
aim here is to examine the practical implementation of this procedure and its efficiency in the case of bent
plates.

3. Construction of the special virtual fields
3.1. Constraints under which the special virtual fields must be built

Let us now examine the properties that the special virtual fields w* must satisfy. As explained in Grédiac
et al. (2002a), these fields must obey two conditions in all cases. Three extra conditions must also be satis-
fied if the distribution of the loading remains unknown or if only one part of the actual strain field is
measured but these particular conditions do not hold here. The two first conditions are

e Condition 1: the special virtual fields must be kinematically admissible. Hence,
Vi=1,...,n,w(x},}) =0 9)

e Condition 2: for each unknown stiffness, the special virtual fields must verify the six fundamental equali-
ties in Table 1.

Table 1

Value of the different integrals with the special virtual fields
Extracted Special virtual L 1, I, I I Ly
parameter field
D,, we 1 0 0 0 0 0
D,, W@ 0 1 0 0 0 0
D,, w® 0 0 1 0 0 0
Dy, W@ 0 0 0 1 0 0
Dy W) 0 0 0 0 1 0
D W 0 0 0 0 0 1




M. Grédiac et al. | International Journal of Solids and Structures 40 (2003 ) 2401-2419 2405

3.2. General expression of the virtual fields

According to Grédiac et al. (2002a), it is proposed to expand the special virtual deflection with mo-
nomials as follows

=33 (3) () (10)
where the 4,’s are unknown coefficients which completely define the special virtual deflection fields and
therefore the corresponding unknown stiffness. The number of these unknowns is denoted n,,,, with

Ak = (n+1) x (m+ 1) (11)
The goal is now to determine the ny, 4;’s using the above two conditions.

3.2.1. Condition 1

The plate is simply supported at n, points P(x},y;). Hence condition 1 and Eq. (10) lead to n, linear
equations of the type

;;Au<xk> <y‘> —0, k=1,....n, (12)

Note that one could also consider the following virtual deflection field instead of the preceding one defined
in Eq. (10)

s

=Tl —x) -y, (ZZA,,( )( )) (13)

k=0 i=0 ;=0

Such a field is directly kinematically admissible, but the calculation of the virtual strain components is much
more complicated in this last case. Consequently, the field in Eq. (10) is used in the following.

3.2.2. Condition 2
Integrals which appear in the six fundamental equalities in Table 1 involve the special virtual curvatures.
These curvatures are deduced from the special virtual deflection field w* by differentiation

2 (55 )

i=2j=0

—a<zzfu—1> ()(;,)“2)) (14)

i=0j=2

(iiw G m“)

i=1j=1

Substituting the above expressions of the virtual curvature components in the six equalities provides six
linear equations where the 4;;’s are the unknowns. These equations are not reported here for the sake of
legibility.
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3.3. Final linear system

M. Grédiac et al. | International Journal of Solids and Structures 40 (2003) 2401-2419

In conclusion of the above section, a system of n, + 6 linear equations where the 4;;’s are the unknowns is
obtained. For instance, the ny, 4;;’s of a special virtual field leading to Dy, verify the following system

i=1j=

bZ EZAU](]

i=! j—

ZZAII(Zl) (3

i=0;=0

S5y (%) (3)

i=0/=0

=0

=0

m n

ZZAIJ(

i=0/=0

Xng
a

() -

o EHINIORIGRIES
Hggﬁﬂo D fyk(2) (3) 7 ds =0
BESAG 1) k(2 () s
A=) ik (5) 7 (3) ds =0
A [k (2) () as = 0

S A [k (2) 1 (3) " as
RIS - ) fik(2) (Y a5 =0
wZZ%U&() Dy gs

D fok(2)'(3)"ds =0

ng equations

0

6 equations

The 4,;’s of the special virtual fields leading to the other stiffness parameters are determined by changing the
location of the “1” in the right-hand part of the system. The above system can be written as

DY=E

(16)

where D is a (6 + n,) X nyy rectangular matrix, Y is the vector of the ny, unknown 4;’s which define the
special virtual fields, E is a vector with 6 + n, components. All of them are equal to 0 except one among the
six first ones which is equal to 1. As explained above, the location of this 1 depends on the stiffness to be
determined. Let us now examine the procedure used for solving this system.
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3.4. Procedure used for solving the final linear system

The procedure presently used for solving the system is described in Grédiac et al. (2002a) and Grédiac
and Pierron (2001). Only its main characteristics are therefore recalled.

It must first be underlined that there are more unknowns than equations if the expansion of the virtual
field in Eq. (10) is such that

Ak > 0 + 1 (17)

In this case, the matrix of the linear system becomes rectangular and there is an infinity of solutions. The
idea is to take advantage of this property to retain a solution which is the most stable when noisy data are
considered. First the

nunk!

(6 + ny)! (nynk — 6 — ny)!

different (6 + n,) x (6 + n,) square matrices are extracted. It is then examined if the corresponding linear
system can be inverted, i.e. if the determinant is different from zero. In this case, the (6 + n,) corres-
ponding A4;;’s are determined by inversion of the linear system assuming that the remaining ny, — 6 — n,
A;’s are zero for stability reasons (Grédiac et al., 2002a). A special virtual field is obtained and the
corresponding unknown stiffness if deduced using Eq. (7). Since many different invertible square matrices
are found in practice, several estimates of the stiffnesses are obtained. It is considered that the
“best” estimate is the value which is the less sensitive to noisy data (Grédiac et al., 2002a). Selecting the
square matrix with the best condition number could be considered (Golub and Loan, 1993), but it
has been shown that it is more efficient to voluntary introduce a disturbance in the input data (Grédiac
and Pierron, 2001) and then to select the estimate which is the less sensitive to this disturbance. The
reason is the fact that the method of the condition number is too general: it does not account for
the particular structure of the components of the matrix. Since they are built as weighted integrals of the
actual measured strain fields, they do not uniformly react when a noise is introduced. Finally, all
the invertible square matrices are disturbed (presently by adding a constant value to the coordinates)
and new stiffnesses are deduced. The less sensitive to this disturbance is considered as the optimal
identified value. The corresponding special virtual field is called hereafter optimized special virtual
field.

4. Numerical simulations
4.1. Principle

The objective here is to investigate the capabilities of the VFM in terms of accuracy and stability.
The input data are strain components on the top surface of bent plates. Such data are directly related
to the curvatures within the framework of the theory of thin plates (Lekhnitskii, 1968). They can be
obtained in practice with a suitable optical device, either directly or by differentiation of measured
slopes (Surrel et al., 1999) but this point is not discussed here to focus only on the identification
procedure. These data are therefore provided by a finite programme (ANSYS 6.0 package) and the goal is
to retrieve the bending stiffness components input in the FE programme. The tested plate is a 0.1 m x 0.1
m square subjected to some local forces (see Fig. 2). The mesh has 50 x 50 =2500 square elements.
F, causes bending of the plate along direction 1 between supports P, and P,. F> causes bending of
the plate along direction 2 between supports P, and P;. A twist of the plate is finally caused by F;.
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&
F,
P y
M,
100 mm
Fig. 2. Square plate under bending.

Table 2
Bending stiffnesses of different anisotropic plates

Plate # Material Stacking D,, (Nm) D,, (Nm) D,, (Nm) Dy, (Nm) D,; (Nm) Dy, (Nm)

sequence

1 A [04], 3.410 0.852 0.256 0.333 0 0

2 B [04]; 10.909 0.839 0.251 0.417 0 0

3 B [304], 6.592 1.558 2.042 2.208 3.217 1.115

4 B [0+ 30 90]; 9.000 1.292 0.983 1.150 1.308 0.464

5 A [0+ 30 90]; 2.925 0.967 0.440 0.517 0.332 0.118

Consequently, the six bending stiffness components are expected to influence the actual deflection/slope/
curvature fields. They are therefore identifiable. In practice, F = F; = F, = F; = 10 N.

Since the plate is simply supported at three points P;, P, and P;, n, = 3 conditions must be written to
obtain an admissible virtual field

1'/‘\}*(x:"w)’yl"l):‘/'\1’1*()61”27yP2) :w*(xP}’yP}) =0 (18)

Concerning the numerical procedure, the first step is to fix a value for m and n which are the maximum
degree of the monomials in Eq. (10). m = 3 and n = 3 are chosen here. In this case, ny = 16 4;’s must be
determined to define the special virtual deflection field whereas 6 + n;, = 6 + 3 = 9 equations are available.
This result illustrates the fact that an infinity of solutions will be found a priori.

16! 16!
9l(16 —9)! 917! 11440
different square matrices can be extracted from the rectangular matrix E in Eq. (16). The procedure used in
Grédiac et al. (2002a) and recalled in Section 3.4 is used to determine the 4;;’s. Since the side of the plate is
100 mm long, a = b = 100 mm in Eq. (10).
Several plates listed in Table 2 are tested. They exhibit various types of anisotropy. Material 4 is a glass/
epoxy (E, = 40 GPa, E, = 10 GPa, v,, = 0.3, G,, = 4 GPa), material B is a carbon/epoxy (£, = 130 GPa,
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Table 3
Identified bending stiffnesses, plate 1
D, (Nm) D,, (Nm) Dy, (Nm) Dy, (Nm) D, (Nm) D,; (Nm)
Reference 3.410 0.852 0.256 0.333 0 0
Without noise 3.412 0.850 0.256 0.334 6.3 x 1073 -1.9x10™*
0.06% —-0.23% 0% 0.3% - -
p=1% 3.485 0.854 0.253 0.334 0.001 0.002
-1.91% 0.23% -1.17% 0.30% - -
p="5% 4.532 0.467 0.175 0.354 -0.016 0.002
32.90% —45.19% —31.64% 6.31% - -
q = 5%, average 3.430 0.840 0.267 0.333 4.4x107* 1.7x107*
0.59% -1.41% 4.30% 0% - -
q = 5%, coef. of variation (%) 5.19 7.08 17.70 0.263 - -
Table 4
Identified bending stiffnesses, plate 2
D, (Nm) D,, (Nm) D,, (N'm) Dy; (N'm) D, (Nm) D,; (N'm)
Reference 10.909 0.839 0.251 0.417 0 0
Without noise 10.899 0.848 0.251 0.417 8.7x 1073 0.01
—-0.09% 1.07% 0% 0% - -
p=1% 11.132 0.857 0.246 0.418 6.9 x 107 —-0.002
2.04% 2.15% —-1.99% 0.24% - -
p=>5% 12.616 1.281 0.100 0.432 —-0.006 0.028
15.65% 52.68% —60.16% 3.60% - -
q = 5%, average 11.031 8.347 0.234 4.189 15%x 107* 3.7x 1074
1.12% —0.47% —6.77% 0.47% - -
q = 5%, coef. of variation (%) 8.23 12.79 76.66 0.986 - -

E, =10 GPa, v,, = 0.3, G,, = 5 GPa). All plates are 1 mm thickness. Their bending stiffnesses in Table 2 are
considered as reference values for the following numerical simulations.

4.2. Results

The results obtained for plates 1-5 are reported in Tables 3—7. In each case, several calculations have

been performed.

e First, the three curvatures at the center of the elements obtained from the FE model are considered as
input data. The values identified with such data are reported in row 2 of each Table (“without noise”).
Note the deflections or the slopes could also be considered as input data but a numerical differentiation
should be added. These cases are therefore not presently considered to focus only on the identification

procedure.
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Table 5
Identified bending stiffnesses, plate 3
Dy (Nm) D,, (Nm) D, (N'm) D, (Nm) Dy (Nm) D,y (Nm)
Reference 6.592 1.558 2.042 2.208 3.217 1.115
Without noise 6.614 1.564 2.051 2.222 3.234 1.143
0.33% 0.39% 0.44% 0.63% 0.53% 2.51%
p=1% 6.397 1.589 2.015 2.193 3.268 1.159
-2.96% 1.99% -1.32% —0.68% 1.59% 3.95%
p="5% 4.874 2.244 1.421 2.743 3.813 1.349
—26.06% 42.75% -30.41% 24.23% 18.53% 20.99%
q = 5%, average 6.656 1.590 2.135 2.219 3.214 1.159
0.97% 2.05% 4.55% 0.50% —0.09% 3.95%
q = 5%, coef. of variation (%)  10.1 29.0 23.0 11.1 9.1 37.7
Table 6
Identified bending stiffnesses, plate 4
Dy, (Nm) D,, (Nm) D,, (Nm) Dy, (N'm) D,; (Nm) D,; (Nm)
Reference 9.000 1.292 0.983 1.150 1.308 0.464
Without noise 9.006 1.295 0.982 1.146 1.308 0.464
0.07% 0.23% -0.10% -0.35% 0% 0%
p=1% 8.954 1.314 0.969 1.143 1.296 0.484
-0.51% 1.70% —1.42% -0.61% -0.92% 4.31%
p="5% 10.289 1.765 0.204 1.052 1.208 0.622
14.32% 36.61% -79.25% -8.52% —7.65% 34.05%
q = 5%, average 8.964 1.309 0.986 1.166 1.296 0.475
—0.40% 1.32% 0.31% 1.39% -0.92% 2.37%
q = 5%, coef. of variation (%) 4.47 10.80 18.42 3.50 7.29 9.66
Table 7
Identified bending stiffnesses, plate 5
D, (N'm) D,, (Nm) Dy, (N'm) Dy (Nm) Dy, (Nm) Dy (Nm)
Reference 2.925 0.967 0.440 0.517 0.332 0.118
Without noise 2.933 0.972 0.439 0.517 0.331 0.120
0.27% 0.52% -0.23% 0% -0.30% 1.69%
p=1% 2.981 1.001 0.430 0.504 0.340 0.130
1.91% 3.52% -2.27% -2.51% 2.41% 10.17%
p=>5% 3.986 1.717 0.394 0.452 0.326 0.271
36.27% 77.56% —10.45% -12.57% -1.81% 129.66%
q = 5%, average 2.899 0.959 0.336 0.516 0.436 0.120
-0.89% -0.83% —23.64% -0.19% 31.33% 1.69%
q = 5%, coef. of variation (%) 6.25 10.15 6.81 0.82 6.61 5.66
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e Two types of noise are then added to these input data to observe the sensitivity of the procedure to a
noise. The first one is a shift of the coordinates of a magnitude of p% of the side of the square plate.
In practice, such bias could be due to a displacement of the camera which captures the data onto the
surface of the plate. In this case, a constant value of p x a is added to the coordinates of the points
where the data are known (the center of the elements of the FE model): x = x+p xa,y > y+p xa.
Results obtained with p = 1% and p = 5% are reported in rows 3 and 4 of each table. The second
type of noise is a uniform random noise added to the curvatures. The magnitude is a percentage
q% of the maximum value of the absolute value of the three curvatures. Results obtained with
q = 5% are reported in rows 5 and 6 of each table. Thirty different calculations have been performed,
each of them with a new set of randomly generated noisy curvatures. The average of each stiffness is
reported in row 5. The coefficient of variation (defined by the ratio between the standard deviation of
the distribution and the average) is reported in row 6.

When looking at the results obtained from “‘exact” data, the identified stiffnesses are all within less
than 1% of the reference ones, validating the numerical identification routine. To evaluate the impact of
simulated measurement noise, one has to look at the results in a comparative manner. Comparing the
results obtained for plate 1 (glass/epoxy unidirectional) and plate 2 (carbon/epoxy unidirectional), it
appears quite clearly that the second is more sensitive to noise than the first. This is consistent with
results obtained on in-plane configurations (Pierron and Grédiac, 2000) where a stronger anisotropy leads
to more difficult identification. Nevertheless, the results are good in general, apart from the D,, term
which is very sensitive to noise. Again, this is consistent with previous results obtained by the authors or
others teams. The reason is that this stiffness component does not influence the strain and stress fields
very much, leading to a certain instability. A possible way out of this is to identify invariant parameters,
as proposed in Grédiac (1996a). Another surprising feature is the sensitivity of the identified stiffness
components in this case to a severe shift in coordinates (p = 5%), except D,. This had not been seen on
previous in-plane configurations (Pierron and Grédiac, 2000). The reason is certainly the fact that the
shear strain is presently predominant in the actual strain field because of the loading conditions, as il-
lustrated below. Finally, it can be seen that the coupling terms D,, and D,, are always at least an order of
magnitude below the other terms, indicating that these terms are zero. Considering now the carbon/epoxy
unidirectional plate at 30° it can be seen that although both terms are identified within reasonable
bounds, the D,, component is more sensitive to noise. The reason is certainly the same as that given above
for the D,, component. Nevertheless, the present procedure enables the extraction of the six stiffness
components of an anisotropic plate with just one test. Moving now to more elaborate stacking sequences
(Tables 6 and 7), the same remarks as above apply.

4.3. Examples of special virtual fields

The special virtual fields obtained for plate 1 are plotted in Fig. 3 along with the actual deflection
field. The special virtual fields are multiplied by a constant K to obtain comparable orders of magni-
tudes between actual and virtual fields. K is reported in the caption of the figures. It can be observed
that both the actual and the virtual deflections are zero at the three supports. The virtual deflections are
zero at these points because they are kinematically admissible. It also clearly appears that the actual
deflection field is much smoother than the special virtual fields. This is due to the fact that the virtual
fields filter the actual curvatures to extract the unknown parameters. Consequently, the measured data
at some parts of the plate contribute more than others. As a general remark, it is clear that such fields
could not have been guessed. Their expressions are given below.
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Fig. 3. Actual deflection field (same in each figure) and optimized special virtual deflection fields, plate 1.
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It can be observed that the monomials in the expansion of the special virtual fields are different from one
case to another even though y/a and x*/a’ | are used in the six cases.

Actual and virtual curvatures k, and k(" are plotted in Fig. 4a and b respectively, their product
ke x k" in Fig. 4c. Two cases are considered: without noise added to the curvatures (left-hand side
column) and with noise added to the curvatures (right-hand side column). The second case is in fact the
result obtained with the first of the 30 calculations performed when noisy curvatures are processed (see
Section 4.2 above). The magnitude of the noise is here g = 5% of the maximum value of the absolute value
of the three curvatures. In the present case, the maximum value of the absolute value of the third curvature
ks is about 30 times greater than the maximum value of the absolute value of the first curvature k,. This is
due to the fact that F = F; = F, = F; in Fig. 2, leading therefore to a predominant twist. This is the reason
why the error on £, is very crude, as can be seen in Fig. 4a.

The virtual curvature k" is rather 51mple This result is consistent with the above express1on of the
spec1a1 virtual deflection field: only 1/a?, x/a® and xy/a* are used to expand the virtual strain kM in the
case “without noise”. It must be pointed out that the virtual curvature fields are similar in both cases.

In both cases too, it can be checked that

/kxl?x*“)ds =1 (20)

since &, is a special virtual field.
The 1dent1ﬁed rigidities are directly proportional to the virtual deflection at M;, M, and M;. It can be
checked in Fig. 5 that the virtual deflection is about the same in both cases (actual curvatures “without
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Fig. 4. Actual and optimized special virtual curvature fields without (left-hand side column) and with (right-hand side column) noise,
q = 5%, plate 1.

noise”” and “with noise”). The identified value of D,, is therefore close from one case to another. Indeed, the
identified value for D,, is 3.152 N 'm in the case “with noise” and 3.412 N m in the case “without noise’’ (the
reference value is 3.410 N'm). This clearly illustrate the stability of the procedure. In fact, the local values of
the curvature exhibit an important random error at each point, but the integration average out these local
discrepancies between actual and noisy data.
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4.4. Open hole plate

An important feature of the method is that it can be adapted to a plate regardless of its geometry. As an
example, an open hole plate has been simulated (see Fig. 6). The plate has the same dimensions as the
previous ones, but has a 20 x 20 mm? square open hole in its center. The material used here is the glass/
epoxy unidirectional composite. The results of the identification are reported in Table 8. Comparing to the
results concerning the same material and the normal square plate (Table 3), it can be seen that both D,, and
D,, are now much more sensitive to simulated noise. This indicates that now, the mechanical test used is not
so well suited to extract all the stiffness components. One way to approach this issue is proposed by Le-
Magorou et al. (2002) and Arafeh et al. (1995) where the test configuration is optimized using sensitivity
coefficients obtained by a finite element model. Since these authors use finite element model updating, it is
natural for them to extract sensitivity factors from these models. Nevertheless, the VFM should be able to
provide information on the “identifiability” of the different coefficients directly from the curvature maps.

7

)
—
T
w
V<

20 mm

100 mm

7

Fig. 6. Open hole plate.
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Table 8
Identified bending stiffnesses, open hole plate
Dy (Nm) D,y (Nm) D,y (Nm) Dy (N'm) Dy, (Nm) D,y (Nm)
Reference 3.410 0.852 0.256 0.333 0 0
Without noise 3.412 0.854 0.255 0.333 48 x 107 8.7x 1073
0.06% 0.23% —-0.39% 0% - -
p=1% 3.380 1.104 0.245 0.333 -33x10™* 0.026
—0.88% 29.58% —4.29% 0% - -
p="5% 3.239 2.057 0.140 0.340 —-0.086 0.125
-5.01% 141.43% 2.10% —45.31% - -
q = 5%, average 3.342 0.847 0.270 0.334 -8.2x 1074 0.002
-0.02% —0.59% 0.30% 5.47% - -
q = 5%, coef. of variation (%)  7.18 27.08 0.15 22.44 - -
X
/ .
P. P,
’y ‘y
= A
E
Py Ps y
100 mm
Fig. 7. Hyperstatic plate.
Table 9
Identified bending stiffnesses, hyperstatic plate
D, (N'm) D,, (Nm) D,, (Nm) D;; (N'm) D;; (Nm) D,; (N'm)
Reference 3.410 0.852 0.256 0.333 0 0
Without noise 3.411 0.853 0.256 0.334 24x107° 23x107*
0.03% 0.12% 0% 0.30% - -
p=1% 3.393 0.848 0.254 0.336 —-0.001 7.2x 1074
—-0.50% —0.47% —-0.78% 0.90% - -
p=>5% 3.337 0.839 0.257 0.359 -0.019 0.003
-2.14% -1.53% 0.39% 7.81% - -
q = 5%, average 3.413 0.852 0.256 0.334 5.6x 1073 1.6 x 107
0.09% 0% 0% 0.30% - -

q = 5%, coef. of variation (%) 1.94 1.48 5.48 0.54 -
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More work is needed in this area to perform the simultaneous optimization of both actual and virtual fields.
This is a key issue for the future of identification from whole-field measurements with his procedure.

4.5. Hyperstatic plate

A last example is shown to illustrate the capabilities of the method. A fourth support is added at point
Py, as shown in Fig. 7. If this test is carried out in practice, it will be impossible to know the actual imposed
displacement at this fourth support. For the numerical simulations, an imposed value of 0.5 mm is pres-
cribed at this fourth support to model a small defect of the testing device. It should be underlined that if a
finite element model updating technique was used, the value of this imposed displacement would be re-
quired as input data. With the VFM, only a fourth condition must be added to the three listed in Eq. (18) to
obtain admissible deflection fields

W (xp; yp,) = 0 (1)

In this case, the contribution to the virtual work of the force at this point is zeroed by the virtual de-
flection. The material use here is the glass/epoxy unidirectional. The results are reported in Table 9. When
comparing to Table 3 (same material), it is clear that the results are indeed much better with the fourth
support. This indicates with no error that this last test is better in terms of sensitivity. It shows that the
VFM could be used to extract sensitivity factors based on simulated noise. Again, this point should be
investigated more closely in future work.

Finally, Fig. 8 shows both actual and virtual fields. It can be checked that the virtual fields have all zero
deflection at point P, since it is admissible.

5. Conclusion

Applying the VFM with special virtual fields leads to the direct determination of the bending rigidities of
thin anisotropic plates from heterogeneous strain fields. A procedure for determining the special virtual
fields has been presented in the particular case of the bending of plates. Numerical simulations have shown
that the procedure is accurate. The sensitivity of the identified parameters to noisy data has been investi-
gated. It has been shown that it is compatible with a practical implementation of the procedure since the
noise is unavoidable in this case. Finally, the VFM has been tested in the case of an hyperstatic plate for
which the displacements prescribed by the supports remain generally unknown. The results found in this
case are much less sensitive to noise than in the other cases. This feature clearly shows that the actual strain
field (and not only the virtual one) directly influences the accuracy and the sensitivity of the procedure.
More work is therefore needed to define some parameters to evaluate the sensitivity of each stiffness
component to the identification procedure. This could lead in the future to the definition of a confidence
index for each value identified and to the definition of mechanical configurations which would be optimized
with respect to this index.
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